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ABSTRACT 

Let d be an arrangement of n lines in the plane. IfRa, ..., Rr are r distinct 
regions of d ,  and Rl is a pcgon (i = 1, ... , r) then we show that 

i = 1  

Further we show that for all r this bound is the best possible if n is sufficiently 
large. 

A collection of  n distinct lines in the real projective or  Euclidean plane is said 

to fo rm an arrangement if  no point  o f  the plane belongs to all o f  the lines. An 

ar rangement  is said to be simple if  each pair  of  lines has precisely one point  in 

common ,  and no point  o f  the plane belongs to more  than two lines. 

In [1; theorem 18.2.9] B. Gr t inbaum states and proves the following result 

which is a t t r ibuted to N. Gunderson  (see [2]). 

THEOREM. I f  a simple arrangement of n lines in the real projective plane 

contains a p-gon and a q-gon then p + q <= n + 4. 

Gr i inbaum also states that  if  a simple ar rangement  in the real projective plane 

contains a p-gon, q-gon and r-gon, then p + q + r __< n + 9. However ,  figure 

18.2.1 of  [1] shows this to be false. The following theorem corrects this state- 

ment  and generalizes the result to the total number  of  sides contained in r distinct 

regions o f  an ar rangement  o f  n lines. The  arrangements  are not  necessarily simple 

and m a y  be in either the real projective plane, or  in the Euclidean plane.  

THEOREM. Let d be an arrangement of n lines in the plane. I f  R1 , . . . ,R ,  
are r distinct regions of d ,  and R i is a pl-gon (i = 1, . . . , r )  then 

This boundcan b e a c h i e v e d f o r e a c h r a n d a l l n  >= 4 ( 2  ) . 
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Proof. It is easy to check that there are no arrangements of fine lives which 

contain more than one pentagon. We deduce that in any arrangement d there 

are at most four lines of ~¢ which contain a side of each of two distinct regions. 

Thus if we write s(i,j) for the total number of lines of d which contain a side 

of each of the regions Ri and Ri,  then 

(2) s(i,j) <= 4 

for all i, j satisfying i ¢ j and 1 _~ i, j __< r. 

We denote by a(il, ..., is) the number of lines of ~¢ which contain a side of 

each of the regions RiI , . . . ,R~ , but of none of the regions Rj, for all 

j e {1, 2,. . . ,  r} \ { i l , ' " ,  i~}. Then s(i,j) is the sum of all the numbers a(i~,..., is), 

(2 _< s _< r) which contain i, j within the parentheses, so that 

(3) s(i,j) = a(i,j) + ~ a(i,j, k) + . . .  + a(1,2,..-, r). 
[i,j] 

Here ~ridla(i l , . . . , is)  denotes summation over all 

{i~,-.-, is} of {1, 2,.--, r} which contain i and j .  

The total number of sides of all the regions R1, ..., R, is 

s-membered subsets 

(4) ~ Pi. 
i = 1  

Since a line which contains an edge of each of t of the r regions will be counted 

times in (4), the number of distinct lines of d which contain a side of at least 

one of the regions R1 , ' " ,R ,  is 

(5) ~, Pi - E a(i,j) - 2 ~ a(i,j, k) . . . . .  ( r -  1)a(1, 2,.. . ,  r), 
i = 1  

where ~ a(il, ..., is) denotes summation over all s-membered subsets {il, "", is} 

of  {1, 2,...,  r}. 

Since ~¢ is an arrangement of n lines, expression (5) has n as an upper bound, 

so that 

(6) ~ Pi < n +  ~ a( i , j )+ 2 ~ a ( i , j , k ) + . . . + ( r - 1 ) a ( 1 , 2 , . . . , r ) .  
i = 1  

If  we consider the sum ~ s(i,j) over all i ~ j ,  (1 =< i, j __< r), then each term, 

on the right-hand side of (3) yields a sum of the form 
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Z a(il,'..,is), (2 -< s -< r).  
[i,j] 

The inner summation is over all s-membered subsets {ia,"',i~} of (1,2,-. . ,r} 

which contain i and j ,  and the outer sum is over all i and j satisfying 

i ¢ j , X  <=i,j<=r. Insuchasumtheterma(i~,...,i~)occurs(2 ) times so that 

(7) ~ ~, a(il,...,i~)= ( s t  ~ a(il,...,i~) 
[i ,Jl 

and 

(8) ]~s(i,j)= ~ a ( i , j ) + ( ~ )  ~a(i,j,k)+...+(~)a(1,2,...,r). 

We can solve (8) for ]~ a(i,j) and substituting in (6) we see that 

(9) i=x 

, 2 , (2 -< t < r -  1), are all negative, so 

that 

Pi <= n+ ]~ s(i,j). 
i = l  

(10) 

Using (2), we obtain 

(r) 
~=a p i < n + 4  2 ' 

which is the inequality of the theorem. (r) 
To show that this is the best possible bound for each r and all n > 4 2 ' 

we construct, in the Euclidean plane, an arrangement of 4 ( ; )  lines which con- 

tains r regions, each of which is a 4(r - 1)-gon. 

On a circle choose r equally spaced points P1,"',P,. For each point 

Pi,  (1 _< i _< r),  draw a circle, center P~, with radius small enough to ensure 

that a common tangent of any pair of the small circles does not intersect or touch 

any of the other small circles. For each of the ( ; )  pairs of circles draw the 
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four common tangents. Each small circle will be circumscribed by a 4(r-1)-gon, 
there are r such regions, and we have an arrangement of 2 r ( r -  1) lines such that 
equality in (1) is achieved. The construction in the case r = 4 is shown in Figure 1. 

\ 

Figure 1 

The Euclidean arrangement described above can be modified slightly to ensure 

that no two lines are parallel and no three lines are concurrent. Then we have 

a simple Euclidean arrangement. By embedding these arrangements in the real 

projective plane, we arrive at projective and simple projective arrangements. In 

each case we get equality in (1) so the given bound is the best possible. 

It is clearly possible to introduce s further lines into the arrangements described 

above in such a way that each such line cuts off precisely one vertex of one of 

the 4 ( r -  1)-gons, and does not intersect any of the other 4 ( r -  1)-gons. The effect 

is to increase each side of relation (1) by s, so equality continues to hold. In this 

w a y w e s e e t h a t f o r a n y r > 2 a n d a n y n > 4 ( 2 ) , b y p u t t i n g s =  n - 4 ( 2  ) ,  

we can find an arrangement of n lines so that equality holds in (1). 

Following Levi [3], we call a collection of simple closed curves in the projec- 

tive plane, an arrangement of pseudolines provided 

(i) Each pair of curves have precisely one point in common, and the curves 

cross each other at this point. 

(ii) No point of the plane belongs to all the curves. 

It is possible to define in the obvious way regions in arrangements of pseudo- 

lines and it is not difficult to see that there are no arrangements of 5 pseudolines 
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which contain more than one 5-sided region. We therefore deduce that the theorem 

is still valid for arrangements of  pseudolines. 

I f  n <  4 ( 2 ) e x a m p l e s  show that equality in ( 1 ) m a y  not be possible. For  

example, if r = 3, n = 7, then [1; figure 18.1.1 (part 2)] shows that 

p + q + r < 16 = n + 9 for all simple arrangements of  7 lines. I t  would be 

interesting to discover similar bounds for ~ l P ~  when n < 4 2 " 

This work forms part of a Ph.D. Thesis being prepared under the supervision 

of  Professor G. C. Shephard to whom I express thanks for his help in preparing 

this paper. 
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